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This paper presents an extension built on a hexagonal grid of the wave automaton,
which was introduced in past few years for describing wave propagation in inhomo-
geneous media. This new method is capable of computing wave propagation in 2D
anisotropic media without the need for introducing interpolating schemes. After a
comparison of isotropic single scattering with analytical results using Mie theory, the
method is used to compute the field scattered by one anisotropic particle for various
orientations of its principal axes. Scattering by a collection of anisotropic particles
is also presented. 2000 Academic Press
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1. INTRODUCTION

The wave automaton is a numerical method that has been introduced to describe
propagation in random media [1, 2]. By using appropriate propagation and scattering r
over a discrete lattice, it can be considered as a discrete implementation of Huyg
principle [3]. In particular, it bears strong resemblance with the transmission line mai
modeling (TLM) method, which is commonly used to solve the Maxwell equations
electromagnetic structures [4]. However, it differs from the TLM method in two way
First, it propagates and scatters real or complex quantities over the network instea
voltage pulses as in TLM. In the following development, we shall refer to these real
complex quantities as currents. Note that it also differs from lattice gas automata that
Boolean variables (see, for instance, the recent model for 3D electromagnetic propag
introduced in [5]). Next, the construction of the wave automaton relies on the fundame
symmetries of the current’s dynamics such as time reversal and reciprocity [6, 7].
to this construction, the model is entirely determined by a network of unitary scatter
matrices. Hence, it also belongs to a large family of similar models used in different ar
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of physics: the lattice Boltzmann wave model [8, 9], quantum cellular automata [10, 1
network models (NWM) [12, 13], etc.

The discrete wave equations resulting from the general construction described in [7] v
the Schodinger, the Klein—Gordon, and the classical wave equations. In this paper, we:
focus on this last equation. While this equation allowed the simulation of wave propaga
in inhomogeneous media, it was, however, limited to isotropic media. This limitation
also found in usual methods devoted to numerical simulation of wave equations suc
Maxwell equations. For instance, the finite-difference time-domain (FDTD) method ne
for anisotropic materials the introduction of additional interpolation schemes in order
get field values which are not available from the FDTD grid [14]. Similarly, the proble
has been solved with the TLM method by introducing a new generalized TLM node [1
Since the wave automaton can be identified with a finite-difference algorithm, one co
think of introducing interpolation schemes as in the FDTD method. However, this wol
be in conflict with the spirit of the method, which is founded on an equivalent of Huyger
principle. Propagating current between nodes cannot be associated with such interpol
schemes. It turns out that two of the hypotheses made in the general construction o
isotropic wave automaton must be modified in order to handle anisotropic media. The
one seems natural and consists in abandoning the isotropy of the process that describ
scattering of the currents at the nodes of the network. However, relaxing the isotrop
the scattering process is not sufficient. It turns out that the principal axes of the resul
anisotropic medium are bound to lie along the axes of the Cartesian grid, thus preventin
model from describing an anisotropic material with principal axis along arbitrary directiol
This led us to use a hexagonal grid instead of a Cartesian grid. This task is simplified by
fact that most of the results obtained in [7] are valid on any arbitrary lattice. Hence, one
needs to adapt the main steps of the construction described in [7] to the hexagonal lat

The paper is organized as follows. In Section 2, we recall briefly the main steps of
construction, which led to the general discrete wave equation described in [7]. This
cludes the definition of the currents and of the field, the propagation and scattering rt
and their symmetries. We stress the importance of the special form of the scattering
trices, which is needed to close the wave equation. This result enables us to eliminat
currents from the equation that governs the field evolution and makes the wave autc
ton equivalent to a finite-difference scheme. We conclude by showing that all hypothe
made in [7] lead to modeling an isotropic medium. In Section 3, we abandon some of
hypotheses introduced in Section 2. We deduce in particular the finite-difference ver:
of the wave equation on a hexagonal grid. We show that this equation is appropriat
describe a two-dimensional anisotropic medium with arbitrarily oriented principal ax
In Section 4, we consider an inhomogeneous medium. We focus on the special treat
that is needed to describe the interface separating two different media. In Section 5
consider the far-field patterns of Mie scatterers to demonstrate the capability of the
gorithm. Excellent agreement is found between the wave automaton and exact result
isotropic scatterers. Then, far-field patterns of anisotropic scatterers are presented for v
no analytical results are available. In conclusion, we discuss possible extensions of
work.

2. THE WAVE AUTOMATON FOR AN ISOTROPIC MATERIAL

In this section, we recall the definitions, notations, and main steps of the constructio
a discrete scalar wave equation in an isotropic medium. The details can be found in [7
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FIG. 1. (a) Propagation of currents along the bonds of a regular lattice. For convenience, a square I
has been represented. However, most of the results discussed in this section are valid for lattices with ark
coordination numbee. (b) The bonds are labeldd=1;:::;z+1 at each nod€. The neighbor node that is
linked tor” through bondk is calledr. As the bonds are Iabeled in the same manner at each node, note that b
numberk at noder is given a different number at nodig. For notation convenience, we ndtethis number.
Hence, bondk at node” andk at noder, designate the same bond. With this notation, the propagation step re:
Eq.lt+¢/=S.rt/;k=1;:::;z+ 1. Note also that fok=z+1; 1,1 =T.

The currents are defined as real or complex numbers that propagate along the bor
a discrete lattice. The nodes of the lattice are labeled by the discrete vector pasitior
Although most of the results described in this section are valid over any arbitrary lattice,
shall consider in the following aregular lattice (i.e., a Bravais lattice) with fixed coordinati
numberz. Moreover since we are only interested in the classical scalar wave equation
not, for instance in the Scbdinger equation, it will be sufficient to consider real currents
At each timet; z outgoing currentsS..r;t/; k=1;:::; z leave each lattice node and
propagate in one discrete time step thez neighbor nodesk, where they become incident
currentski..; t + ¢ /. We have used the following notations. Natiés the neighbor site,
which is linked to node” by the bondk, along which the currentgy.r’;t/ and S..r; t/
propagate. Moreover, borkdfor noder” is referred to as bonki for noder’ (Fig. 1). With
this convention, the propagation step along the doothoder (or bondk of nodefy) reads
Ei.lk;t+¢/ =S t/andEg.r;t + ¢/ = S.Fk; t/. Note that since we consider a Bravais
lattice, the indexXk can be associated to a particular lattice direction latmithe opposite
direction. This would not be true for a random lattice, as considered, for instance, in
An additional outgoing currers, 1.7 t/ is attached to each node. This current (hereafte
referred to as the on-site current) can be considered as propagating along a loop attacl
the node. Itbecomes anincidentcurrBnt,.r’; t + ¢/ onthe same node at the next time stef

Each nodée of the lattice is a scatterer described by a matrix that instantaneously trz
forms thez+ 1 incident currentsEy.i;t/;k=1;:::;z+1 in z+1 outgoing currents
.F;t/. Hence, the scattering process is descrlbed by

z+1
&.F;t/:Zs‘d.F/E..r‘;t/ k=1;::11:2+1; (2.1)
=1

where thes,.r/ are the elements of thee+ 1/ x .z+ 1/ scattering matrixS. The time
evolution of the currents is summarized in Fig. 2.

| }
A e el
° Scattering Propagation *
time t time t time t+t

FIG. 2. Scattering and propagation of currents.
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The field at nod€ and at time is defined by a linear combination of the incident current

z+1
9.7t/ = Z ST TE.Tit/; (2.2)
k=1

where the, .1’/ are real coefficients to be determined by the properties discussed belo
The most general explicit form of the discrete wave equation, which governs the ti
evolution of9.r’; t/, can be written

O.ft+¢i/=1.9.0t',9.7"t"1,9.7";t"1;::/; (2.3)

where the field at nodé and at timet + ¢, is computed from known values of the field at
=/, =,

specific nodes’; r"; : : : and at previous times; t”, etc. By using (2.2), Eq. (2.3) becomes

z+1
Z Sk TTE. Tt +¢/
k=1

z+1 z+1 z+1
=f <Z Sk TTET Z ST TET L, Z ST TEE" " :): (2.4)

k=1 k=1 k=1

It has been established in [7] that this evolution equation of the currents is possible if
elements of the scattering mati$have the structure

S e %ok.F/,| .- ,,k.F/—k|; (2.5)

where the,|.r'/ are the coefficients introduced in the definition of the field (Eq. (242))./
and,,x.F/ are coefficients to be determined angis the Kronecker symbol. Moreover,
..k-F / must satisfy the condition

vk=1;::241 .l iend =% (2.6)

where the constant? is independent of the node positiBnEquations (2.5) and (2.6) are
essential in the construction of the model and have been named closure conditions ir
Without them, it would be impossible to obtain fér.r’; t/ a closed equation like (2.3),
where no current’s term appears.

The construction of the model goes further by introducing fundamental symmetries
the evolution of the currents. The first symmetry is time reversal, which implies that |
scattering process is reversible when the directions of the current arrows are reversed.
yields the conditiorS-1 = S for the scattering matrix. The next symmetry is reciprocity
Each matrix elemerd, of Sdescribes one elementary current process, which is transm
sion, reflection or scattering. It couples the two channels (bdaatsjil . Reciprocity means
that the scattering process frdonto | and the reciprocal process frdnto k have the same

Note that the propertieS * = SandS=S' imply thatSis orthogonal.
By using the current propagation and scattering rules, the closure equations (2.5), (
and the two previous symmetries, one obtains

z+1
OFt+¢/+ 9.t =i/ = LkFMhi.Fd9.Tit/; (2.7)
k=1
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where
Yo . T/ = .14 1=,/ .1, .T1=3.F/ (2.8)
z+1
3.7/ = Z 2T/ (2.9)
k=1
Vi, Vk=1;:z41 0 LAf/ =,2=1 (2.10)

Equation (2.7) is an equation of the type (2.3). This is a closed equatic® fart/,
where no current appears explicitly. In the next section, Eq. (2.7) will be the starting pc
for the construction of the wave equation in an anisotropic medium. However, we conti
with the isotropic case in order to point out the hypotheses that are not compatible \
anisotropy.

The remaining unknown parameters are the () coefficients,y.r’/. To determine the
values of these parameters, isotropy of the scattering process has been assumed in [7
additional symmetry means that at any node all bonds are equivalent (except the or
bond). In other words, the scattering matrix is invariant under a new labeling of the bor
One finds

vkil kil #£z+1 k.l = .7l (2.11)

Eventually, by considering ddimensional Cartesian lattice £ 2d) of lattice constant
a, the following discrete wave equation has been obtained in [7]

2d
[9.F;t+¢/+9.F;t —¢/ —29.F;t/]=.% = ,1.F/c? [9.Ft/—9.F;t/]=a% } ;
0
k=1
2.12)

wherecy = a=¢ isthe velocity ofthe currents; .F/=2=.2d + 2.f//and .F/=,54.1.F/=
,1-F/. Equation (2.12) is the discretized version of the scalar wave equation

029=0t% = 2.7 /V?9 (2.13)

The velocity of the wave is?.F/ =2c3=.2d + 2.F'//. Sincec?.F'/ does not depend on the
direction of propagation, (2.12) describes an isotropic medium. In reality, there exis
residual anisotropy, which is inherent to any discrete model of wave propagation, eve
the case of isotropic wave propagation. It is observed for example in the high freque
range of the dispersion curvésk/ that becomes strongly anisotropic when the waveleng
is of the order of the lattice constant. Hefleandk are the wave frequency and the wave
vector, respectively. This effectis well known and thoroughly discussed in several referel
(see [16-18], forinstance). However, we are not interested in that anisotropy, which vani
in the continuum limit. Therefore, if we want to describe effective anisotropic propagati
some of our previous hypotheses must be modified.

The first guess is to abandon the hypothesis of isotropic scattering. In such a case
obtains a wave equation with anisotropic propagation. However, one finds that the princ
axes are boundto be the coordinate axes of the Cartesian grid. Hence, introducing aniso
scattering is not sufficient for describing an anisotropic medium whose principal axes
oriented along arbitrary directions.



546 LEGRAND ET AL.

To make further progress, itis important to notice that the results obtained up to Eq. (2
are valid for any arbitrary lattice. In particular, they are not limited to the Cartesian latti
that has been used to obtain Eq. (2.12). Any Bravais lattice in any dimension could h
been chosen. Therefore, we may wonder whether another lattice could solve the diffic
encountered with a Cartesian grid. In the next section, we shall see that a hexagonal I
is a good choice for two-dimensional media.

3. THE WAVE EQUATION IN A TWO-DIMENSIONAL HOMOGENEOUS
ANISOTROPIC MEDIUM

We continue the construction of the wave equation starting from equations (2.7)—(2.
that resulted from the rules governing the current evolution, time reversal symmetry,
reciprocity. In contrast with the previous section, we do not impose isotropic scatteri
nor do we impose a Cartesian grid. However, we shall eventually restrict ourselves
two-dimensional medium.

First, by choosing,,«.F'/=,,=1 and introducing the field.r;t/=9.r;t/=3.r/,
Eq. (2.7) becomes

z+1
8.1 t+¢/+8.Mt— i/ =[2=8.7> .l ,i.Fd8.Fi;t: (3.1)
k=1
Next, we transform (3.1) in order to write explicitly the second order time and spatial de
vatives of8.1’; t/. By using the definition (2.9) dB.r/ and remembering thgt.F,,1/ =
.z+1.F/, one easily obtains

8.rt+./+8.rt—¢/—-28.r;t/

N

k= k=1

[y

z
=[2:3.F/]{Z ,&.F/[8.Fk;t/ - 8.7 t/] + Z kT il — ,k.F/]8.Fk;t/}

= [2:3.?/]{ (L2.F/[8.T;t/ — 8.F;t/] + ,2F/[8.7; t/ — 8.F;1/])
k=1

N
N

z
+ ) ke F i = ,k.F/]8.Fk;t/}: (3.2)
k=1

Note that in the last equation the first summation is made over4Ralirections K; E)
instead of the bondsk. Assume that..F'/ = , ./, which means that two opposite bonds
of a node are equivalent. This assumption corresponds to local inversion symmetry ai
less stringent than isotropic scattering, where all thé/ but , ,,1.F/ are identical. Then,
(3.2) becomes

8.rt+¢/+8.rt—¢/—-28.1;t/
z=2
=[2:3.F/]{Z L2 TF/[8.Fi;t! + 8.7t/ — 28.7; t/]
k=1

z
+ Z ak-T ] k. Tkd — ,k.F/]S.Fk;t/}Z (3.3)

k=1
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We recognize in8.7; t/ + 8.1 ; t/ — 28.1; t/] the discretized form of the second spatial
derivative along the directiork; k/. Note also that, i..F'/ has been replaced hy.r/ in
the second sum. Hence, if the medium is homogenepiis/ = ,.r/ and the last term of
(3.3) vanishes. The final equation reads

[B8.F;t+¢/+ 8.1t — ¢/ —28.F;t/]=% = ZiZCE[S.Fk;t/+ 8.7t/ — 28.7; t/]=a%;
k=1
(3.4)
where the velocities
Cf = 2c5,¢=3 (3.5)

do not depend oni in a homogeneous medium. As befaxe=a=;, is the velocity of the
currents.

Until now, these results are valid for any lattice. Let us consider first a two-dimensio
Cartesian grid with coordinate ax&sy. The coordination number =4 and (3.4) be-
comes

[8.F;t+¢/+ 8.7t — ¢/ —28.7;t/]=;?
=C2[8.F +-X;t/ + 8.7 — -X;t/ — 28.F; t/]=a*
+C[8.F +-y;t/ + 8.F —-y;t/ — 28.7; t/]=a* (3.6)
Equation (3.6) describes an anisotropic medium. However, the principal axes are alic
along the coordinate axesy.

Let us consider next a hexagonal lattice with coordinate exesw (Fig. 3). The coor-
dination number iz =6, and (3.4) becomes
[8.F;t+¢/+ 8.7t — ¢/ —28.7;t/]=?

=C2[8.F +-U;t/ + 8.F — -0;t/ — 28.7; t/]=a° + ¢2[8.F +-V; t/ + 8.F — —V; t/

—28.7;t/]=a® + G [8.F +-W;t/ + 8.7 — -W; t/ — 28.7; t/]=a% (3.7)
wherec, =c¢; = Cg; ¢, = C, = Cs, andc,, = €3 = ¢4 according to the labeling of the bonds

shownin Fig. 3c. Itturns out that Eq. (3.7) is appropriate to describe anisotropic propaga
with arbitrarily oriented principal axes.

b i
(a) (b) _iy ©

X
™

FIG. 3. (a) Hexagonal lattice. (b) The coordinate axes;w are chosen along the three directions of the
lattice. (c) Labeling of the bonds at each node of the lattice. With our previous notatietis 5= 2, and 4= 3.
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FIG. 4. The direction of the principal axes; Y is given by .

Let us consider a medium with principal ax¥sY making an angle with respect to
axesx; y (Fig. 4). The wave equation, which reads in tRgY coordinate system

07" =0t% = 507 =0 X% + 387~ =0Y? (3.8)
becomes, in th&; y coordinate system,
0°8=0t* = a@*8=0x> + ba*8=0y” + cd*8=0x@y; (3.9)
with

a=[c§.1+cos2/+cf.1—cos2/]/2

b= [ck.1—cos2/+cf.1+cos2/]/2

c=(ck—cf)sin2:
This is precisely the mixed derivatigé8=0x@y, which prevented Eq. (3.6) from describing
anisotropy with arbitrary orientation.

In contrast, it is straightforward to establish that (3.8) becomes iojthhew coordinate
system

028=0t2 = fi,028=0u? + fi,0°8=0v? + fi,,028=0wW?; (3.10)
where
fix = (% +¢F) —2(ck —cf)sin( «+2)]/3  k=uv;w (3.11)
Here,  is the angle of axik with respect to axix; i.e., ,=-..=6, y=7..=6, and
w=..=2.

Itis obvious that (3.10) is the continuum limit of (3.7). Therefore, by identifyindfitie
in (3.10) with thec{’s in (3.7) and using (3.5), one obtains

2= (3=6c3)[(ck + %) —2(ck —cZ)sin. k+2 /]  k=1;23 (3.12)

Remembering thaty = ,« and the definition (2.9) dB.r/, which becomes for a hexagonal
lattice

7
3= .2=2(.2+.3+.3)+.% (3.13)
k=1
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the three equations (3.12) are implicit equations for fkis. To find explicit expressions
as functions of the physical parametesg cy, and , let us first notice that they's are
defined modulo a constant factor in the definition of the field (2.2). In particular, we ¢
express thg’s by their ratios, 2=,2, where the scaling factor has been arbitrarily chose
equal to, ;. From (3.12) and (3.13), one finds

L= L3[(ck+cf) —2(ck —ch)sin. «+2 1]/ [(cx +¢§) —2(ck —ch)sin. 1 +2 /]

k=23 (3.14)
2=6,2[cd— (X +2)]/[(ck +¢&) —2(ck — c&)sin. 1 +2 /] (3.15)
3 =6,2c5/[(ck +¢F) —2(ck —cF)sin. 1 +2 /]: (3.16)

If the value of, ; is chosen arbitrarily, the three above expressions are functiang of,
and . However, it is possible to choose the value, fin such a manner that, does not
depend on the angle To explain this choice, it is useful to understand the role played |
,7. Let us consider the special case of isotropic propagation. Ghency and all, «’s but

ck =c¢ =3c5/(6+,3/.3): (3.17)

This expression shows that the velocity of the wave is determined.bwn particular, the
maximum wave velocitg? . is obtained for,7 =0 and is given by

Cmax = CO:\/E:

This result is intuitive. The role played by the on-site current is to trap a fraction of t
wave at each node and at each time step. This trapping effect is controlled by the valt
,7. The net result is to slow down the wave whgnincreases.

In the anisotropic casey plays a similar role. Itis natural to consider thaimust control
the values of the velocitiesx andcy independently of the orientation This condition
will be fulfilled if does not appear in Eq. (3.15). Hencg; ¢y, and being given, we
make the choice

L= [(ck + ) —2(ck —cd)sin. 1 +2 /] /3 (3.18)

Using (3.18), one finds

= [(k+cf) —2(ck —cf)sin. k+2 /]/3c k=123  (3.19)
3=201- (G+) /] (3:20)
3=2 (3.21)

We note that (3.20) is the extension to anisotropic media of (3.17), which is only ve
for isotropic media. At this stage, the construction of the model is completed. The value
,k being known and remembering the chojge=,, = 1, Eq. (2.8) leads tth = ,«. Then,
we deduce the elemerdg of the scattering matri from (2.5).

Let us point out a limitation of the present model. Notice that Eg. (3.19) determines
square value ofx. Hence, the right-hand side must be positive whatever the orientatior
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This implies the restriction
1=3<cf/ck <3; (3.22)
or in terms of the indiceByx = Cnax=Cx ; Ny = Crmax=Cy,
1=v/3 < ny=nyx < V3

To conclude the present section, we recall that we have considered a homogen
medium in our construction. We shall focus on the description of inhomogeneous medi
the next section.

4. TWO-DIMENSIONAL INHOMOGENEOUS ANISOTROPIC MEDIA

Let us consider the interface between two different homogeneous media (Fig. 5). E
media are characterized by their valugscy; andcy;c,; . Inside each medium, wave
propagation is described by the general equation (3.4). Our task is to identify the steps o
construction, which must be modified to take the interface into account. In Section 4.1,
establish the new equation that governs the time evolution of the field at a node that bel
to the interface. In this new equation, the values of parameters of the wave autom
depend on the way the velocity gradients are described at the interface. This descri|
can be intricate except if simplifying assumptions are used as discussed in Section 4.:

4.1. Wave Equation at the Interface

We must start from Eq. (3.2), which we rewrite below for a hexagonal lattice:

8.rt+i/+8.rt—¢/—28.r;t/

6
+ > LRl - ,k.F/]8.Fk;t/}: (4.1)

k=1

Medium 2

T

RN
T

Medium 1

FIG.5. The dotted lines represent the bonds of the hexagonal lattice, which connect the nodes of two diffe
media. A position vector is denotédn medium 1 and” in medium 2.
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Two assumptions have been necessary to obtain Eq. (3.4) for a homogeneous me
First, we have assumed local inversion symmetry

Jk-Tl = Lk.F/ (4.2)
and next, homogeneity
,k-Fk/ = ,k.F/I (43)

In particular, both assumptions were necessary to cancel the last term in (4.1). |
the interface, ./ and ,{;.F[(/ have the values given by Egs. (3.19) for their respectiv
homogeneous medium they will not be identical in general. Here, we use the prime
(see Fig. 5) to indicate thatandr} do not belong to the same medium. Hence, the last ter
in (4.1) will be different from zero. We may wonder whether this could be the interfa
term that is needed for the inhomogeneous case. It turns out that this guess is not co
To see this, consider the particular case whet€0, ¢ =cx, andc{, # cy. The values of
.k-F/and,|.r"/ are given by (3.19)

L Fl=[(E+c5) —2(ck —cf)sin. /] /3¢5 k=1;2;3 (4.4)

2
k
JeF = [(R+c5) —2(ck —cf)sin. /] /33 k=1;2;3 (4.5)

Consider a plane wave propagating alongxtdirection,8.7;t/ = 8gexpi. 't —kx/,
where8, does not depend oy According to the assumptioti, = cx, this wave should
propagate with velocitgy in both media. It should not feel the interface and should proj
agate as in a homogeneous medium. However, sifigécy, (4.4) and (4.5) imply that
.-Fi/ # .«.F/ and the last term in (4.1) is different from zero at the interface. Hence, tl
term will induce spurious instead of zero scattering.

To avoid this problem, we assume that the equality’x/ = ,«.F/, which results from
(4.2) and (4.3) in a homogeneous medium, is also true at the interface. Hence, the last
in (4.1) always vanishes. However, since in genggaf/ and , .}/ are different at the
interface, this assumption is not compatible with (4.2). Therefore, we shall not postulate |
inversion symmetry at the interface. From a physical point of view, this sounds reason
since inversion symmetry is certainly lost at any interface.

Let us introduce some notation.ffandf, are two nodes connected by bokdét the
interface, we noteg, .f’; ',/ the common value ofy.F'/ and, .f}/ according to the above
hypothesis

00 = kTl = LW (4.6)
Also, since, ./ does not depend on inside each homogeneous medium, we not

k- =,k in medium 1 and,«.r"/ =, in medium 2. For instance, with these notation:
Eq. (4.1) inside medium 1 becomes

3
B.Ft+¢/+8.Mt—¢/—28.1t/=) A8.I;t/+ 8.Fj;t/ - 28.7;t/]: (4.7)
k=1
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Here, the,\’s are given by (3.19) and we have used (3.21). At a nodgthe interface,
Eg. (4.1) becomes

8.rt+¢/+8.Ft—i/—28.7;t/
6—n n
=[2=3.7/] {Z 8. Mgt/ = 8.5t + > LR /8.Fit — 8.F;t/]}; (4.8)
k=1 k=1

where we have separated théonds, which connedtto medium 2 from the other bonds.
Note that we should have writtenr'/ instead ofh, since this number depends on the loca
configuration of nodé€. To simplify the notations, we shall keep writingn the following.
The coefficient3.r/ reads

[}

—nN n
3.7/=) 24+ LA/ 4,571 (4.9)
1 k=1

=~
1

Using ,%: . in each homogeneous medium, we can rewrite (4.8) as

8.rt+i/+8.rt—¢/—-28.r;t/
3
=[2=3.F/]{ 3" LABFit/ + 8.F t/ — 28.F;t/]
k=1

n
+ ) LT - ,ﬁ][s.r,;;t/—s.r‘;t/]}: (4.10)
k=1

We could also write equivalent equations at the nade$ medium 2 that belong to the
interface. In particular, (4.9) becomes

6—n’ n
I R e A '8 BN 0 (4.11)
k=1 k=1

wheren’ is the number of bonds which connétto medium 1.

Finally, we note thaB = 2 in medium 1 and in medium 2 as in any homogeneous mediut
There is no special reason f& to have a different value at the interface. Therefore, w
assume

3.7/=3.71=2 (4.12)

a choice to be validated below.
Using (4.12), (4.10) becomes

8.Mt+¢/+8.Ft— i/ —28.F;t/]=7

3
:cg{z L2[8.Fk;t/ + 8.7t/ — 28.7; t/]

k=1

n
+ > AT - LE] 8.t/ — 8. t/]}/az: (4.13)

k=1



WAVE AUTOMATON FOR ANISOTROPIC MEDIA 553

The first sum in (4.13) is the Laplacian in medium 1. Hence, the last term must be in
preted as a source term due to the interface. To check this, let us consider again the s|

case of an isotropic medium, i.¢k=1;:::;6; ,2=,2%. The last sum in (4.13) becomes
n n
S LT =28 Ft/ = 8.t = [L5.FiT - ,i|[8.F;t/ — 8.F;t/]
k=1 k=1
n 6—n
= [LAnR/=L38.Nat/ —8.5tN+ ) [, —.5[8.F);t/ - 8.F;t/]:
k=1 j=1
(4.14)

In the second equality, the last term, which equals zero, has been added on purpc
obtain a summation over all neighbors of nadés ,2.7’; F}/ is unknown, let us assume

A E =i, 2+ [1—fi],/E: (4.15)

Then, (4.14) reads

n
[LAT T = L2 [8.Fit/ — 8.7 t/]
k=1

n 6—n
=_1—fi/{ =B ret/—8.rtN+> [,2- 2[8.7;t/-8.7 /]}:
ki j=1

=1
(4.16)

For a hexagonal lattice, the sum over all neighbors is the discrete form of the quar

V,2.F/ - V8.F;t/. Using (3.19) for an isotropic medium, the wave velocitgis= c2=
cZ =.3=2/c3,3. Hence, the last term in (4.13) is the second order discrete approxir
tion of the product 21 —fi/Vc2.F/- V8.F;t/. If we choosefi =0:5, we obtain exactly
Vc2.F/-V8.F;t/. This last product is known to appear, for instance, in the sound wa
equation inthe presence of a sound velocity gradient. This indicates that our hypotheses
and (4.12) have a sound basis. Note that using (4.15), we would have obtained the pr
2fiVc2.F'/- V8.F'; t/ for a noder” of medium 2. This is also equal 8¢2.7'/ - V8.7"; t/
whenfi = 0:5. Actually, we shall see later that the valuefiofs not essential.

If the velocity is anisotropic, the last sum in (4.13) can be considered as the disc
equivalent for an anisotropic medium of the prodﬁ’«f.F/ .V8.F;t/. It is obvious that
such a term will not induce spurious scattering as in the example we considered a
beginning of this section.

4.2. Determination of the Interface Parameters

In (4.9)—(4.11), the parameteys.i'; '\ /; ,1 .fk; 7'/, ,7.F/ and,%.r’/ are unknown. Using
(3.13) in both homogeneous media and (4.12), Eqgs. (4.9) and (4.11) become

n
Z+Y (AT - .8 =0 (4.17)

V=Y (GRar - L) =0 (4.18)
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If N andN, are respectively the numbers of nodes and bonds that belong to the interf:
(4.17) and (4.18) form a system of, equations, one for each nodeandi”’. There are
first N, unknown parameters2.r'/ and,’3.r"/. Next, remember that.F; 7/ = ,2.F; '/
when.r’; ./ and.r’j; I’/ correspond to the same bond. Hence, the number of unkno
parameters?.i; r/ or ,2.r;; '/ is Np. Eventually, (4.17) and (4.18) form a linear system
of N, equations with N, + Np/ unknown parameters. AN, ~ N;,, these parameters are
largely undetermined.

To solve this system, additional constraints are needed. First, nothing prevents us
writing

EF =i FF 2 [ — i P T/ e (4.19)
which is more general than (4.15). Tfief’; ',/ are to be determined. The only hypothesis

made in writing (4.19) is tha?.F; 7}/ = ,2 if ,2=,’s. An equation similar to (4.19) can
be written for,2.F; F'/. Hence, (4.17) and (4.18) become

n
P =54 1 —fig.F; T/ Dx (4.20)
k=1
o
S50 == i i FID (4.21)
k=1

where theDy are known quantities defined as

Dk = .2 — /& (4.22)
We are free to choose the valuesfifr’; r\,/ for each bondr’;r,/. This choice being
made, (4.20) and (4.21) provide the values $f/ and,’3.F"/ at each nodé andr” of the
interface. To choose tHé..r'; '}/, one just has to make sure that the conditions

0<,2F/;,5F1<2 (4.23)

are verified. This is a consequencexf’/=3'.i"/ =2.

However, proceeding that way is not necessary. It means that we are describing in d
the velocity gradient at each bond of the interface. This is generally useless. As a reasol
choice, we can decide théit.f; F;/ = fi,. Here the valudix depends on the directiak; k/
of the hexagonal lattice but does not depend on the particular borid. Hence, instead of
Nn equations, the system (4.20), (4.21) reducdsdequations, wher8l; is the number of
local configurations involving or n’ connecting bonds. Apart from the case where medi
1 or 2 correspond to localized defects including a few nobligds usually much smaller
thanN,.

One further approximation is to give fix a unique valudi, =fi at any bond of the
interface, as we did in the isotropic case. Equations (4.20) and (4.21) become

n
Pl =2+ [1—fi]> Dy (4.24)
k=1
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W
Jor =5 —fi) " D¢ (4.25)
k=1
For instance, if we choode= 1, we obtain
L= .3 (4.26)

Jar ==Y D¢ (4.27)
k=1

This choice means that the velocity gradients are localized at the faafébe interface,
i.e., at the boundary of medium 2. For the opposite chdice 0, the velocity gradients
would be concentrated at the medium 1 side. One could also select any intermediate cl
0<fi <1.ltis obviousthatthe chosen value is notimportant if the thickness of the interfa
which is one lattice bond, is much smaller than other characteristic lengths of the sys
under investigation. Note also that its is possible to describe thicker interfaces by builc
velocity gradients over several bonds using the same general arguments. Eventually,
point out again that the choice fifin (4.24) and (4.25) is limited by the condition (4.23).
In Section 5, (4.24) and (4.25) have been used to describe the boundaries of scat
immersed in a homogeneous medium.

4.3. Summary of the Method

Before providing numerical examples to demonstrate the capability of the wave auto
tion, it is useful to give a short summary of the method. We consider a system mad
several anisotropic media labeled by supersciipts: A; B; C. Each mediunM is char-
acterized by its principal axe¥™, YM making an angle M with respect to axes;y
of a two-dimensional Cartesian grid. The wave velocities al¥fgandYM arec)! and
cY, respectively. The special case of an isotropic medium is automatically included wi
cM=cl.

After the implementation of the geometrical configuration over a triangular lattice, t
subsequent step is to associate a scattering matrix to each node of the grid. We pre
in two steps. First, each mediuM is considered separately from the others. Next, nodk
located at the boundaries between two different m&tliandN are considered.

Let us consider first any mediui. The only parameters to be calculated are the coe

We recall that , k=1;2;3 in (3.19) is the angle of axik of the triangular grid with
respect to axix. In fact, as inside each homogeneous medium local inversion is obey
e, M=, only four distinct values of ' are needed. The coefficient' first enter
the definition of the field.F;t/= 3], ,M.F/E.F;t/ (Eq. (2.2)) and completely de-
termine the scattering elemersf$.r/ =%M.r/,M.r/ —,,M.F /- of the scattering matrix
at nodef” (Eq. (2.5)) sincéwM.i/=,M.r/ and,,\.r'/=1. At this stage, the coefficients
.M are associated to each node of medity including the nodes of its boundaries.
Hence, as all nodes are identical insMe it is sufficient to store four values} for each
mediumM.

Next, let us consider the interface between two médiandN. The values of,}' and
EN =, that have been previously computed must be modified according to Eq. (4.19)
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each bondk; E) linking two nodes™ andi™ belonging toM andN, respectively. Hence,
using the approximation described in Section 4.2, the common valyef/ and, i.iN/
is given by

Lo AN PN =i LV 2 + 1L —fil L)%

where O< fi < 1. In many cases, choosifig= 0:5 will be sufficient.
Given this new value of.F™/ and, .FN/, the coefficients 7.FM/ and, 7.F"N/ must be
modified according to (4.24) and (4.25)

[ ) = [,w%u—fuki;{[,mz— L7
) = [,mz—ﬁ;{[,mz— LT

wherenM (resp.nM) are the number of bonds, which connect nBgresp™) to medium
N (resp.M).

Finally, it is important to point out that it is not necessary to compute the scatteri
elements s .F/, which describe the scattering process according Sof;t/=

that the scattering process reads
SOt/ = ,MPr .t - EGFit, k=10 (4.28)

Hence, given seven currerfig.f; t/ incident at nodé€ and at timet, one first computes
o.r;t/= Ezzl .M F'/Ex.F; t/ according to (2.2) and the®.r’; t/ according to (4.28).

5. NUMERICAL EXAMPLES

To demonstrate the capability of the anisotropic wave automaton, we consider a circ
particle (medium 1) immersed in a homogeneous isotropic medium (medium 2). The sys
is excited by a plane wave and the scattering pattern is recorded at the opposite side.
the particle is chosen isotropic in order to compare the wave automaton results to knowr
field patterns obtained using Mie theory. In the second example, the scattering properti
an anisotropic particle have been computed using the wave automaton. Finally, the scat
field of a collection of anisotropic particles is also presented.

5.1. Isotropic Scatterers

Medium 2 is characterized by its refractive indéx= Cmna=C’, WhereCnax= co=+/2. Inthe
same way, the scatter is characterized by its refractive inéegmn,=c wherec = cx = cy.
In the following examplen’ = 1:527 anch = 1:636. Figure 6 displays the spatial map of the
field amplitude at a fixed time when the field is stationary. Presenting the field amplitt
instead of the intensity is convenient to display the small amplitude wavelets scatte
far away from the particle. In this example,R =29:85, wherek; is the wave number
in medium 2 andR is the radius of the scatterer. The physical valuesRe2 ,,m for
, =0:64 ,,m in vacuum in the case of light propagation. The corresponding numeri
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FIG. 6. Map of the field amplitude scattered by an isotropic disc. The system is excited by a plane w
propagating from the left to the right hand side. To compute the far-field intensity, the near field has been recc
along the vertical line drawn behind the scatterer.

values used in our simulations are=44a and ,, = 9:3a, where, ; is the wavelength in
medium 2 and is the unit step of the hexagonal grid.

The near-field pattern obtained in this example has been recorded along the vel
line indicated in Fig. 6. Then, standard diffraction theory has been used to compute
far-field intensity along a circle having a large radius compared to the wavelength anc
size of the particle. The result is compared in Fig. 7 with the analytical values provic
by the Mie scattering theory in a two-dimensional geometry [19]. If we superimpose
two curves in Fig. 7, they cannot be distinguished from each other. To obtain a be
comparison, the curves of Fig. 7 have been displayed in Fig. 8 using a logarithmic sc
Far-field intensities for particles with other radRiare also presented. For each radRjs
the two curves computed with the wave automaton and with the Mie analytical results
superimposed. The agreement is excellent at the center of the curves but deteriora
large angles. This effect is expected because of the finite size of the numerical box
contains the particle. For large observation angles, the computation of the far-field
plitude needs values of the near field close to the lateral boundaries of the system. §
presently a perfectly matched layer absorbing scheme is not available for the wave aut
ton, simple absorbing layers have been used to reduce wave reflection by the bound
Thus, near field values close to the boundaries are strongly disturbed. This results i
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FIG.7. (a)Far-field intensity computed from the near field displayed in Fig. 6. (b) Far-field intensity comput
from the Mie scattering theonfR=2,,m, , =0:64,,m).

large drops of the wave automaton intensities re@® and+90°, which are clearly dis-
tinct from the Mie curves. However, the agreement, which is observed at the center of
curves for all particle radii, demonstrates that good accuracy can be obtained with the v
automaton.

5.2. Anisotropic Scatterers

Medium 2 is the same as in Section 5.1. We have also used the saméxRke9:85.
The scatterer is now characterized by two different indicgs= 1:527 andny = 1:744.
Such values are encountered for instance in liquid crystals.

1.0-100

1.0-102

1.0104

1.0106

1.0108

Far-field intensity

1.010°10

1.0-10-12

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1
-0 -80 -70 -60 -50 -40 -830 -20 -10 O 10 20 30 40 50 60 70 80 90

1.010°14 =L

Angle (degrees)

FIG. 8. Far-field intensities of scatterers with different radRis,m) at, = 0:64,,m. For each radiug, the
curves computed with the wave automaton and with the Mie analytical results have been superposed. The
drops observed near90° and+90° belong to the wave automaton curves as explained in the text. For clarity
the figure, the different pairs of curves have been vertically shifted.
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FIG. 9. Map of the field amplitude scattered by an anisotropic dise Q). The direction of propagation
corresponding to the largest index=ny = 1:744 is indicated by a vertical line drawn inside the scatterer.

Three orientations of the principal axeX andY have been chosen,=0; =..=4,
and =..=2. Note that the indicesy in medium 1 andy’ in medium 2 have been chosen
identical on purpose. When=0; n, =nx = 1:527 andny =ny = 1:744. As previously,
the indicesx; y designate the absolute coordinate axes dnW the principal axes of the
scatterer. Hence, with an incident plane wave alongtaes, the wave propagates without
scattering (Fig. 9). In contrast, scattering is observed when.=2 (Fig. 10). In this case
Ny =ny = 1:744 andny = nx = 1:527 inside the scatterer. We stress that both scatterers
Figs. 9 and 10 have the same indices. The only difference is the orientation of the princ
axes. The asymmetry due to anisotropic scattering is clearly seen in the third example, w

=..=4 (Fig. 11). The corresponding far-field patterns are presented in Figs. 12 and
Unfortunately, in contrast with isotropic scatterers, we are not aware of analytical or ex|
imental far-field patterns for 2D anisotropic scattering.

Finally, it is interesting to give a last example with several anisotropic scatterers cha
terized by the same indicex = 1:527 anchy = 1:744 (Fig. 14). In this example, the orien-
tations of the principal axes are randomly chosen among the three valu@&s =..=4 and

=..=2. The field scattered by each particle as a functionisfclearly illustrated. Such a
situation is encountered for instance in polymer dispersed liquid crystals. Such material
made of liquid crystal droplets randomly dispersed in a polymer matrix. Because the lic
crystal is in the nematic phase, each droplet behaves as a uniaxial medium. Such mat
are known for their strong scattering properties when the droplets are randomly orient



FIG. 10. Map of the field amplitude scattered by an anisotropic dise (.=2). The direction of propagation
corresponding to the largest index=ny = 1:744 is indicated by a horizontal line drawn inside the scatterer.

FIG. 11. Map of the field amplitude scattered by an anisotropic dise (.=4). Inside the scatterer, the
direction of propagation corresponding to the largest index 1:744 is indicated by the oblique line.
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FIG. 12. Far-field intensity computed from the near fields corresponding=a..=2 (Fig. 10): (a) linear
vertical scale; (b) logarithmic vertical scale.
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FIG. 13. Far-field intensity computed from the near fields corresponding=a..=4 (Fig. 11): (a) linear
vertical scale; (b) logarithmic vertical scale.
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FIG. 14. Map of the field amplitude scattered by a collection of anisotropic particles. The system is excitec
a plane wave propagating from the left- to the right-hand side. The direction of propagation corresponding t
largest index is indicated by a vertical line drawn inside each scatterer. In this exampld,;527,ny = 1:744,
R=1,m,,=0:64,m.

6. CONCLUSION

In this paper, we have developed an extension of the wave automaton model [7]
has been recently introduced to describe scalar wave propagation in the time doma
has been shown that using a hexagonal grid instead of the commonly used Cartesiar
naturally leads to the modeling of wave propagation in anisotropic media. The result:
this model have been compared with known results using Mie theory. The introductior
a hexagonal grid is one of the original features of our model. A major consequence i
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avoid the interpolating schemes that are necessary with a Cartesian grid. We stress th:

re

sult is not limited to the wave automaton and is also valid for traditional finite-differen

schemes. It is also worth noting that the scheme is unconditionally stable since the
evolution of the currents relies on a network of orthogonal matrices. Another original asy

of
or

this work is to demonstrate that the complex case of anisotropic materials with arbitr
ientations can also be modeled by an approach based on a discrete Huygens’ prin

Currently, our model is limited to 2D media. The next step is to extend these result:
Maxwell and elastodynamics equations in 3D media.
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